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The importance of molecular shape in many areas of biochemistry and biomolecular inter- 
actions is well recognised. In spite of this a rigorous and widely applicable means of defining 
and quantifying molecular shape has not been available. This paper, the first of a series of 
papers, presents a new method of quantifying molecular "surface" shape. The development of 
the technique, based on Fourier shape descriptors is discussed in some depth including the com- 
puter programs written to implement and test the method. A subsequent paper will present 
results obtained from the application of the new quantitative molecular shape descriptors. 

1. Introduction 

Considerat ions of  molecular  shape play a very important  role in many  areas of  
biochemistry  and medicinal chemistry, especially when one is concerned with ques- 
tions of  molecular  similarity or recognition of  one molecule by  another.  

At tempts  to represent molecular  shape in a quanti tat ive way  are rendered diffi- 
cult by  the complexity and irregularity of  molecular  surfaces and the lack of  sym- 
metry  in all but  the simplest molecules [1]. Mos t  authors  have been content  to use 
parameters  like molecular  surface area or volume, that  express size but  not  shape, 
or else some approximate  method  such as S T E R I M O L  [2] in which much of  the 
shape informat ion is lost. 

In order to make  an accurate representat ion of  the molecule, and comparisons  
with other  molecules it is essential to encode as much of  the shape information as 
possible. A number  of  interesting mathematical  methods  have been developed for 
tackling this problem, some based on the idea of  homology  groups [1,3] o f  algebraic 
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topology. We have chosen another approach, based on the idea of expressing 
shape in terms of Fourier descriptors [4,5]. A similar approach was adopted by 
Max and Getzoff [6]. 

The technique is novel in the field of molecular sciences, but in other fields a num- 
ber of applications have already been described in the literature [7-9]. Although 
the maj ority of methods have been restricted to the two dimensional domain, tech- 
niques have been described for dealing with three dimensions but with the limita- 
tion of being unable to deal with reentrant surfaces [10]. This severely limits the 
usefulness of these methods. 

In this paper, the first of a series of papers, the Fourier descriptor method is 
further developed to enable it to be applicable to molecular surface shape including 
those with reentrants. 

A brief resume of the Fourier shape descriptor method will be given first, fol- 
lowed by a description of how to extend the method to deal with three dimensional 
surface shape. 

2. The me thod  of  Four ie r  descriptors 

The method of representing shape information using Fourier descriptors was 
first suggested by Cosgriff [11] and the basic principle is straightforward. In its 
simplest form, a closed contour, i.e. the shape to be described, is represented as a 
parametric function as shown in fig. 1. 

As the parameter ~b increases, the shape is generated and, since the contour is 
closed, continually increasing the parameter implies repeated tracing-out of the 
contour. Hence there results in effect a periodic function of the parameter q~ which 
can therefore be represented in terms of a Fourier series as follows: 

l 
r 

Fig. 1. The shape of a contour C, is represented as a parametric function r(~b). 
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r(~)= ~ ane ::n4~, (1) 
/1~--OtD 

where T is the periodicity of the function, in this case 2ft. The expansion coeffi- 
cients of  the series, given by 

an = r(4~)e -i-~n~ d~b, (2) 

are known as Fourier descriptors and it is these that contain the shape information 
of the contour.  

F rom this basic idea the technique has been developed by a number  of research- 
ers in order to tackle such problems as aircraft recognition [7], automatic machine 
part  recognition [8] and for character recognition [9]. In the form described above 
there is, however, a serious difficulty which occurs if a contour has a reentrant 
region. This may result (depending upon the severity of  the reentrant) in the para- 
metric function being multivalued over some range of  the parameter (see fig. 2). 

It is of course possible to represent only a single valued function as a Fourier 
series. 

In order to overcome this problem other methods of  parameterising the contour 
have been used. For example, the parameter may be considered to be elapsed time 
as the contour  is traced out at uniform speed [7] or, alternatively, a function can be 
defined which measures the angular direction of the curve as this varies with arc 
length [ 12]. 

Within these approaches it then becomes possible to describe very general 
shapes using the Fourier descriptor technique. Unfortunately,  as will be seen later, 
the problem of  reentrants will recur in the development of Fourier descriptors for 
molecular surfaces and this will be somewhat less straightforward to overcome. 

J f -  

Fig. 2. A contour described by a function of the polar angle ~b may result in the function being multi- 
valued over one or more ranges of this parameter. 
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In order to compare quantitatively two shapes, Fourier descriptors for each 
s_hhape are calculated which are then considered as a pair of N dimensional vectors 
A = (al a2 . . .  aN),  B = (bl b2 . . .  bN),  where N equals the number of descrip- 
tors obtained for each shape. From this perspective an obvious quantitative mea- 
sure of shape difference is the Euclidean distance between end points of the two 
vectors given by 

D =  ( a n - b n ) ( a n - b , , ) *  (3) 

The measure of course depends on the number of descriptors used (N in the above 
equation) and so should be consistent throughout any set of calculations. The 
number of descriptors required will in general depend on the complexity of the 
shape or the accuracy of representation desired (resolution) and this is one point for 
investigation concerning the molecular descriptors developed and described in 
this series of papers. 

Apart from the number of descriptors used, i.e., the dimensionality of the shape 
vector, of more fundamental importance is the dependence of the shape difference 
measure on how the coordinate system is originally set up. This is due to the fact 
that, for example, a rotation of the contour (or coordinate system) will affect the 
values obtained for the Fourier descriptors. To overcome this, a procedure referred 
to as normalisation must be carried out on the descriptors before a comparison 
can be made and there are two basic approaches to this. The first is to consider posi- 
tioning the shapes in some standard orientation before a calculation of shape differ- 
ence is made [7] and the second is to minimise the distance measure with respect to 
coordinate operations. It is possible to consider the minimisation process in real 
space since it follows from Parseval's identity [13] that the distance measure 
defined above has a representation (strictly in the limit of infinite N) in real space 
given by 

1 ), /2 
D = ~ IrA(~b) - r e (q~) l :  dqS~ . (4) 

From the above, normalisation can be seen to be a process of rotating and trans- 
lating one object with respect to the second such that a best fit according to the mini- 
mum of eq. (4) is obtained. One advantage of the Fourier descriptors is that these 
coordinate operations have a straightforward representation in Fourier space or, 
in other words, a simple effect on the descriptors. Also note that normalisation 
which involves orienting the shapes to some standard position is faster than mini- 
mising the distance measure but is also suboptimum [14]. In this case only the two 
largest descriptors (and a third to resolve ambiguities) are used in the normalisa- 
tion procedure. Since it is often the case that most of the "energy" of Fourier 
descriptors is contained within as few as two descriptors [15], it can be considered 
as effectively a normalisation with respect to gross shape features, i.e., those fea- 
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tures which contribute the most to the shape difference measure. Actually it is 
also possible to use the Fourier descriptors to construct a second set of shape 
descriptors which are invariant under rotations and this approach has also been 
used in shape recognition [16]. Normalisation and particularly the construction of 
rotationally invariant descriptors will have important bearing on the development 
of molecular shape descriptors. 

2.1. FOURIER DESCRIPTORS IN THREE DIMENSIONS 

The method of Fourier descriptors for quantitative shape comparison is well 
developed and has been very successful. It is also based on the powerful foundation 
of Fourier analysis and seems to offer a promising approach to developing molecu- 
lar shape descriptors. One point to note is that the use of descriptors has in general 
been confined to describing two dimensional contours and this is where most of 
the work has been carried out. The reason for this is that the method was developed 
in the field of image processing and has therefore concentrated on flat~ i.e. two 
dimensional, images. 

To obtain three dimensional Fourier descriptors, the shape, now a surface, 
expressed as a function of two parameters, is required. Considering the two param- 
eters u and v, this function may then be expanded as a product of two Fourier series 
as follows: 

f ( u ,  v) = ~-~ ~ ambneinUe imv . (5) 
m n 

Some work has in fact been done in using Fourier descriptors to characterise shape 
in three dimensional [10,17] but in these methods a Cartesian coordinate system is 
used and one of the parameters used for describing the surface is z, the height above 
the xy  plane. Hence they are based on dividing an object into sections parallel to 
the xy  plane and then applying to each section of the object the straightforward two 
dimensional technique described previously. 

There are two main difficulties in extending the two dimensional method to char- 
acterising the shape of three dimensional surfaces. The first problem is that of 
obtaining a parametric description of the surface which results in a single valued 
function. With a cross sectional method as just described this can be overcome in 
the same way as in the two dimensional situation. Hence one parameter is z and the 
second for example is the time parameter when travelling around each sectional 
contour at uniform speed. In this way, a single valued function of two parameters 
may be obtained which can then be expanded as the series given by eq. (5). The 
second difficulty concerns normalisation and the development of rotationally 
invariant shape descriptors. To normalise the distance measure the effect of rigid 
body coordinate operations on the Fourier descriptors must be considered and 
descriptors are therefore required on which these operations have a straightfor- 
ward effect. In particular this concerns the effect of three dimensional rotations on 
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the shape descriptors, and in the work dealing with three dimensional shape 
description just mentioned the shape descriptors have no straightforward depen- 
dence on general rotations. This is clear because of the sectioning approach taken; 
only rotations about the z-axis will result in a simple modification of the Fourier 
descriptors - a reflection of the fact that they are, in the final analysis, inherently 
two dimensional methods. 

The problem is therefore one of parameterising a surface such that a single 
valued function is obtained and finding a suitable set of functions in which to 
expand the parametric function such that rigid body coordinate operations have a 
straightforward representation. In the latter case spherical harmonics would seem 
to be most appropriate, though in fact rotations still have a somewhat complicated 
effect on the expansion coefficients. However, with this choice of basis functions 
it becomes a straightforward matter to obtain rotationally invariant descriptors 
from the original expansion coefficients and this will be discussed in section 8. The 
idea of exploiting the rotational properties of spherical harmonics is not new, and 
has been used in developing the fast rotation function used in making a rotational 
search for examining Patterson maps derived from diffraction data [18]. 

Choosing spherical harmonics as basis functions implies using polar coordi- 
nates as parameters of the surface and therefore similar problems are expected to 
arise as in the two dimensional case when reentrant regions are encountered. In 
spite of this, it was decided to proceed within this approach and seek some other 
method of overcoming the problems of reentrants and indeed a way of avoiding 
this difficulty will be described later. In the following section, an account of spheri- 
cal harmonics will be given and in particular those properties which are relevant 
to the shape descriptor method. 

3. Spherical harmonics 

The traditional way of considering spherical harmonics is as solutions to the 
Laplace equation 

v Z f ( x , y , z )  = 0 ;  (6) 

this approach will be described here. A more detailed discussion can be found in 
Hobson [19]. To obtain solutions to the Laplace equation the Laplacian operator is 
written in polar coordinates and the solutionf(r,  0, q~) (a different function to that 
expressed in equation (6)) is supposed separable such that f ( r ,  O, ~) 
= R(r)~9(O)~'(~). This results in the following equation: 

{ [10  ( 1 
r2 &Zr2 + r Orr + sin----0 0-0 sin 0 + sin 2 0 

(7) 

Since the first term depends on r only and the second two terms depend on 0 and 4~ 
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only, the only way they can be equal is if they are constant. For convenience this 
constant is written in the form l(l + 1 ) to give the following two equations: 

r 2 \-~r 2 R(r) = l(l + 1)R(r), (8) 

1 0 sin0~-~ 4 t - l ( /+1)  O(0)~(~b)=0 (9) 
sin 0 O0 sin 2 0 &b 2 

Considering the case of the angular dependent equation this can again be sepa- 
rated into ~b and 0 dependent terms and equating these terms to a constant - - m  E 

there result two differential equations: 

d 2 
d~ 2 ¢~(~) = -m2~(~) ,  (10) 

[ d ( d )  1 sin0 sin0~- 0 + l ( l + l ) s i n 2 0 - m  2 0 ( 0 ) = 0 .  (11) 

The solution to the former is straightforward and is given by 

¢~( d?) = e im¢~ , (12) 

where the integration constants have been set to 0 (the phase) and 1 (the ampli- 
tude). In the above, the restriction on m to integer values ensures continuity. The 
second of the above equations, (11 ), is Legendre's equation, the general solutions of 
which are the associated Legendre polynomials P~(0) [19]. With the restrictions 
l f> 0 and Im[ ~< l the solutions to the angular part of the Laplacian are the spherical 
harmonics which in complex form are given by 

Y?(O, ~b) = P~t (O)e im~ . (13) 

The spherical harmonics are orthogonal over a unit sphere so that with a suita- 
ble normalisation 

d~ dOsinOYT(O,~)(Y~)*(O,¢)  = 6,,,,,~6jl,. (14) 

Using the orthogonality property a function defined over a sphere r(O, d~) may be 
formally expanded in terms of spherical harmonics as follows: 

oo + l  

r(8,~) = ~ ~ atmY~n(O, fi5). (15) 
1=0 m=-I 

Multiplying through by ( Yt~, ') * (0, qS) gives 
oo +1 

r(O, dp)(Y~,') , (O, dp) = ~ ~ atmYfa(O,c~)(Y~,')*(O, q3) (16) 
1=0 ra=-I 
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and integrating over a sphere 

fo2~ fo~dO r(O, qb)( Yl~, )*(O, qb) 
oo +l r 2 ~  

f~  Y~, ) (0,¢). (17) = ,,"* / dO 
1=0 "*=-I dO J0 

Hence from the orthogonality of the spherical harmonics 

f02n f0 n Y ml • oo +l dO r(0,q~)( ,, ) (O,q~)= ~ ~ atm6H'gmm' (18) 
/=0 "*=-l 

and the expansion coefficients (ignoring the dummy primes) are given by 

at,, = dO r(O, qS)( Yt"*)* (0, qS), (19) 

where dO - d~b d0 sin 0. 
Note that changing the order of integration and summation requires the series 

in eq. (11) to be uniformly convergent and this is generally the case for piecewise 
continuous functions. At discontinuities, convergence is in the mean, i.e., the series 
converges to the average value of the function from the two sides of the discontinu- 
ity [19]. 

The final properties that are required from the spherical harmonics are the effect 
of rotating the coordinate system. Under such an operation rotated spherical har- 
monics are given in terms of the unrotated ones by the expression [20] 

+l 
Y["(O',~')= ~ D(l)(aq"*, ,/3, ~,) Iffi (0, 4~ ) , (20) 

q=- l  

where the matrices D(tm)q(a, 13, 7) form irreducible representations of the rotation 
group ~(3). These matrices are unitary which is expressed by the following [21]: 

+l 
(0 * (21) D(lm)(Ol,~,"{)(Dm, q) (o~,13,'7) = 6"*"*, ; 

q=-I 

this will be exploited in the development of shape descriptors discussed in the fol- 
lowing section. 

4. Us ing  spherical harmonics to obtain three dimensional  Fourier shape 
descriptors 

Some of the properties of spherical harmonics have been described in the 
previous section and these can now be exploited in developing three dimensional 
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Fourier descriptors. Proceeding as for the two dimensional case, a surface is repre- 
sented as a function of polar coordinates r(O, (b) which is then expanded in terms 
of the spherical harmonics, eq. (11). The expansion coefficients are the required 
Fourier shape descriptors given by eq. (19). As in the two dimensional case, these 
descriptors contain the shape information and can be used to define a quantitative 
measure of shape difference as follows: 

O = latin - b tml2~ • (22) 
1, 1=0 m=-I ) 

The upper limit, L, is set according to the number of descriptors used. 
With the new descriptors normalisation also needs to be considered. In this 

work, the development of a suboptimum strategy has not been considered. Hence, 
to obtain the true measure of shape difference eq. (22) would have to be minimised 
with respect to coordinate operations. With respect to translations this is straight- 
forward and occurs when the centroids of the two shapes coincide. In the case of 
rotations, the effect on the expansion coefficients can be derived as follows. 
Expanding a rotated function using rotated expansion coefficients, ~m, gives 

r(O',~b') = ~ ~mY~'(O,c~). (23) 
m 

However, rotated spherical harmonics and unrotated expansion coefficients may 
be used to form an expansion. Thus 

r(O', ~b') = ~ arm Y?(O', q5'), (24) 
m 

and using eq. (20) gives 

r(O', ~') = ~-~ atm ~_#D~t)mY~(O, ~ ) (25) 
m q 

= ~-~a'tmO(l)qm Y7 (0, ~ b) . (26) 
m q 

Renaming dummy indices m and q gives 

r(O t ) ~/) : ~ ~ a,tqO (l)mq Y~(O, q5) (27) 
q m 

and swapping the order of summation, 

r(Ot,~/)=~m (~q alqD(Im)q)Ylm(O,~ ). (28) 

Comparing the above with eq. (I 5), the relation between rotated and unrotated 
expansion coefficients or shape descriptors is therefore given by 
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+l 

a~m = E D(tm)q atq' (29) 
q= - I  

with the shape difference measure now taking the form 

E E a l m - E D ( l m ) q  (Ol'fl''y)blq ( 3 0 )  D =  
1=0 rn=-I 

It is this expression which should be minimised with respect to ~, fl and 7. 
It can be seen that this expression is still somewhat complicated, largely because 

of the need to evaluate the rotation matrix d~(fl) (where D~)q(a, fl, 7) 
= eimTd(mt~(fl)eiqa). Strategies for tackling the above problem will be discussed in the 
second of this series of papers though in fact this later work will be dominated by 
use ofinvariant descriptors to be described presently. 

It has been mentioned that rotationally invariant descriptors have been used in 
the two dimensional case and again because of the choice of spherical harmonics as 
basis functions it becomes possible to calculate descriptors which are invariant 
under three dimensional rotations. This again exploits the unitary properties of the 
rotation matrices. Begin by taking the modulus squared of eq. (29) and summing 
over m. 

+1 +1 +1 

E [a'lm[2= E E [D(Im)q alq[2 (31) 
m=-I m=-lq=-l 

+l +l 
-- E E D(t)a' tD(l)'*a* (32) -- rnq tqk qm) lq 

m=-I q=-I 

+I +1 

= E alqalq E D(1)(D(l)~*qm, rnq, • (33) 
q=-I m=-l 

Thus, using eq. (21) 

+1 +1 

E la~'nl2 = E alqalq ~qq (34) 
rn=-I q=-I 

+1 
= ~ I%12 (35) 

q=-I 

+l 

-- ~ latml 2. (36) 
rn= --1 

Therefore define rotationally invariant descriptors Aj by 



S. Leicester et al. / Molecular surface shape. I 325 

f +t ) 1/2 

A l =  lm~___l[alm[2 1 • (37) 

Using two sets of  such descriptors a shape difference measure is defined as follows: 

D =  At-Bx)  2 (38) 
I, 1=0 

Hence there are now two approaches to quantifying shape, defined by (22) and 
(38). Although both are referred to by D it will always be clear from the context 
whether the original descriptors or the rotationally invariant descriptors are being 
considered. 

5. The  p r o b l e m  o f r een t r an t s  

The three dimensional Fourier descriptors as described will only be successful 
if the function r(O, 4)) is single valued. Hence it is not immediately appiicable to 
surfaces with large reentrant regions since identical problems will occur as are illu- 
strated in fig. 2. A completely general method therefore requires the problem of  
reentrants to be overcome whilst remaining within the framework of  polar coordi- 
nates and spherical harmonics. Some ideas of overcoming the difficulty are 
presented in the following subsections. 

5.1. USE OF A FOUR DIMENSIONAL HYPERSPHERE 

The first approach considered in order to overcome the reentrant difficulties 
was to use a third parameter which would enable multivalued regions to be distin- 
guished. To be more precise, the multivalued function r(O, 4)) is a function defined 
over a sphere in three dimensions and by projecting this function onto a 4-sphere a 
single valued function of three polar angles would result. It would still be possible 
to use spherical harmonics as basis functions, though of  course a product  of  spheri- 
cal harmonics with some other orthogonal basis set would be required to allow 
inclusion of  the third polar angle. Such a product  would be satisfactory since 
al though a four dimensional sphere is being considered only rotations in three 
dimensions need be considered when normalising a suitably defined distance mea- 
sure or obtaining rotationally invariant descriptors. 

Actually it is also possible to consider an analogous situation in the two dimen- 
sional case and this is illustrated in fig. 3. 

Here a multivalued contour is mapped to a sphere to become a single valued 
function of  0 and 4~. Note  the function is a step function and has the values 0 or 1. 
However, being piecewise continuous, Fourier methods are still applicable. This 
function may then be expanded in terms of spherical harmonics and thus a set of  
shape descriptors obtained in this way. Again, it is not necessary to consider full 
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Fig. 3. A contour containing a reentrant is mapped onto a sphere. In this way it becomes a single 
valued function of two polar angles. Note that the function takes the value 1 inside the contour and 0 

outside. Hence a piecewise continuous function defined over a sphere is obtained. 

three dimensional rotations when carrying out normalisat ion but only rotat ions 
of  the sphere about the z-axis. Therefore a product  of  ordinary Fourier  series would 
be a suitable method of  obtaining shape descriptors. 

The ideas just discussed seemed to offer a way around the problem of  reentrants  
even though there would be a considerable increase in computat ional  expense. 
Some preliminary experiments were therefore carried out, restricted to the case of  
two dimensional to three dimensional mapping. This work high-lighted a major  dif- 
ficulty of  the method and concerned the relation between a series expansion of  a 
function and the derivative of  that series expansion and the original function. 

It is recalled that the shape of  a contour  is represented by a function on a sphere 
taking values zero or one so that  the actual shape of  the contour  is defined by where 
on the sphere this function changes value. Hence, effectively the shape of  the two 
dimensional contour  is represented by the derivative of a step function on a sphere. 
Now, it is the case that  a series expansion represents the function on the sphere 
and not  the derivative of  this function and although many terms in the series expan- 
sion may  produce a good representation of the surface function this may  not  be 
the case in terms of  derivatives. Hence the original surface function has zero deriva- 
tive everywhere except at the contour  boundary  where it becomes infinite. In con- 
trast, the function represented by a finite series expansion will have a derivative 
which changes over the entire sphere. This therefore calls into question the reliabil- 
ity of  shape information contained in the coefficients of  such a series expansion, 
so this approach was not  pursued any further. In the following subsection, a further  
a t tempt  at overcoming the reentrant  problem is discussed. 
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5.2. USING EXTENDED PERIODICITY TO OVERCOME REENTRANTS 

A second method  considered for overcoming the reentrant  problem involved 
making use of  the periodicity of  a function defined over a sphere. Figure 4 shows 
the principle in the case of  two dimensions with a contour  containing a single re- 
entrant.  

The contour  is considered as a function in the range 0 to 2rr and as illustrated 
over the subrange a to b it is multivalued. It is possible to consider this function as a 
new single valued function in the range 0 to 6n and of  periodicity 6n so that regions 
on the contour  that  have multiple values are shifted by integer multiples of  2rr as 
illustrated. In this way the original multivalued function becomes a piecewise con- 
t inuous single valued function which may  then be expanded as a Fourier  series. 

This idea may  also be carried over into three dimensions by obtaining from a 
mult ivalued function in the range 0 = 0 to ~, ~b = 0 to 2~, a new piecewise continu- 
ous single valued function in the range 0 = 0 to re, ~5 = 0 to T. The new period T 
would  depend on the form of the reentrants, i.e. the degree of  multiplicity of  the 
function. Spherical harmonics are now modified so that  shape descriptors are now 
given by  

C 

2~ 

! 

Fig. 4. It is possible to obtain a single valued function of the polar angle ~b if the contour contains a 
reentrant. This is done by increasing the periodicity of the function and translating multivalued 

regions by integer multiples of 2n. 
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f0 T f0 arm = de  dO sin 0 F(0, ¢)P~t (0) ei~m¢ , (39) 

where ~(0, ¢) is obtained from the original multivalued function r(O, ¢). 
This in principle allows shape descriptors to be obtained for any molecule but 

unfortunately there is a further problem when the normalisation procedure is con- 
sidered. The effect of rotation on the new shape descriptors may be treated by defin- 
ing a new coordinate, ¢' = 2he~T, such that eq. (39) becomes 

arm = .Io de .Io dOsinO~(O'¢')P'~t (O)e°"¢" (40) 

From this point of view it seems that a function representing the shape of  the 
molecular surface ~(0, ¢) is expanded in terms of ordinary spherical harmonics as 
previously described and therefore the effect on the expansion coefficients of rotat- 
ing this function can be considered in the normal way. To obtain the new function 
~(0, ¢), the original multivalued function r(O, ¢) is transformed into a single valued 
function of increased periodicity in ¢. This new surface representation, ~(0, ¢), is 
then rescaled to produce a single valued function, ~(0, ¢), now defined over a 
sphere. 

Unfortunately because of the way reentrants are resolved it is not true that rotat- 
ing the original molecule by R(c~,/3, ~,) will produce a similarly rotated reentrant 
resolved function. Hence, if 

r(O,¢)--~(0, ¢),  (41) 

then a corresponding relation for rotated versions does not hold. That  is 

R(~,/3, 7)r(O, ¢) --+ R(c~,/3, 3,)~(0, ¢).  (42) 

For this reason this method of dealing with reentrants was not considered further 
and the method to be described in the following subsection was finally adopted. 

5.3. USE O F  M U L T I P L E  S U R F A C E S  - THE S U B S U R F A C E  S O L U T I O N  

This method is somewhat similar to that described in the previous subsection. 
There it was seen that reentrant regions were translated by integer multiples of 2n 
and then the periodicity of the function adjusted to obtain a single valued function. 
With the subsurface approach reentrant regions are again obtained but these are 
then considered as separate subsurfaces. Again, this can be seen by referring to 
fig. 4, which shows the situation for a contour. In the approach now adopted, the 
contours in the range 0 to 2n, 2~ to 4n and 4n to 6n as shown in fig. 4 are considered 
as separate subcontours each with a periodicity of 2n and in the range 0 to 2n. The 
contours are ordered so that referring to fig. 4 that contour in the range 0 to 2n is 
the first order contour (subcontour) and so on to higher order contours. 

By analogy this procedure is carried out for surface functions resulting in a num- 



S. Leicester et al. / Molecular surface shape. I 329 

ber of  separate subsurfaces which are again ordered according to the procedure 
just described. Effectively this means that the first order surface is that surface 
which can be "seen" from the centroid, the second order surface is that surface 
which is obscured by the first order surface only and so on. Clearly, if the surface 
function is single valued then there is only one subsurface and the higher order sur- 
faces are taken as zero. In this way there results a number of separate surface func- 
tions each one of which is piecewise continuous and single valued. It can therefore 
be represented in terms of spherical harmonics. There then results a separate set of  
shape descriptors which can be incorporated into an overall measure of shape dif- 
ference. Hence, summing over subsurfaces, shape difference is defined as follows: 

D =  I~,~ - b~ml2~ . (43) 
I .k=l  I=0 m=-I ) 

In the above, the sum over k corresponds to summing over each subsurface and 
the upper limit K is set to the desired number of subsurfaces to be included. Again, 
invariant shape descriptors can be derived from each set and these used to  define a 
rotationally invariant shape difference measure given by 

D =  2 . ( 4 4 )  

Having defined this new measure of shape comparison, some points concerning 
the significance of  the descriptors should be made. Firstly, the zero order descrip- 
tor a00 corresponds to the size of the surface or subsurface. More exactly, if i is the 
average value of  the surface function (its average radius) then 

_~=f for(O,¢) d~ 
f fodf2 (45) 

Now aoo = f fer(O, ¢)/2v/-ff dr2, where spherical harmonic Yg0 (0, ¢ ) =  1/2v/-ff. 
Therefore, the average radius (a measure of the size of the object encapsulated by 
the surface) is given by a00/2v% Similarly it can be shown that the l = 1 shape 
descriptors contain the coordinates of the centroid of  the surface (2, ~ and Z,). Now, 
it was mentioned earlier that the shape difference measure is a minimum when the 
centroids of the two surfaces being considered coincide (subject to orientation 
also). This can be achieved by placing both surfaces such that their centroids lie at 
the origin of the coordinate system. In this situation the I = 1 descriptors will all be 
zero and can therefore be excluded from any analysis. However, this is only the 
case if the centroid of each separate subsurface is placed at the origin. If  the cen- 
troid of the entire multivalued surface is placed at the origin then the centroids of  
the subsurfaces will not necessarily also coincide with this point. Hence the l = 1 
descriptors will not be zero and should therefore be considered along with all other 
terms. 
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It now seems that there is a general method for obtaining three dimensional 
Fourier shape descriptors which is able to deal with reentrant surfaces whilst 
remaining within the realm of spherical harmonics. In particular it is still possible 
to deal with normalisation in the usual way. In the following sections the practice of 
obtaining and using the shape descriptors of a given molecule is described. 

It is worth noting here that in the work of Max and Getzoff [6], though the exis- 
tence of reentrants was remarked upon, no satisfactory solution to the problem 
was presented. 

6. Evaluat ing harmonic  descriptors 

6.1. CHOICE OF INTEGRATION METHOD 

It is supposed that a surface representation of a molecule is obtained and it is 
then required to evaluate the double integral, eq. (19) given earlier, i.e., the harmo- 
nic shape descriptors. There are three factors to consider in choosing how to evalu- 
ate the integral; these being the speed of integration, the accuracy of the result and 
the ease of implementation. As far as integration methods are concerned, there 
are a number to choose from [22], but for simplicity and ease of implementation it 
was decided to use Simpson's rule. 

One of the factors influencing speed is the time taken to evaluate the integrand 
and the dominating factor here is evaluating the spherical harmonics or more speci- 
fically the associated Legendre polynomials. There are in fact a number of formu- 
las for evaluating the associated Legendre polynomials [23] and the one adopted 
here is a recursion technique given by Press [24]. Unfortunately, for high order har- 
monics a great many recursions are required and this becomes expensive in compu- 
ter time. It is possible to save considerable time if the Legendre polynomials are 
evaluated once only at equal angular intervals and the results stored in an array at 
the beginning of the integration program (this also allows code vectorisation if 
such a facility is available). Hence, during the integration no more time is needed to 
obtain values for a high order Legendre polynomial than that required for a low 
order one, in both cases this being a simple matter of array access. This is then sui- 
ted to using an integration method where the integrand is evaluated at equal prede- 
fined intervals, in this case Simpson's rule. It is of course a double integral which 
is to be evaluated so that the inner integral is evaluated using Simpson's rule which 
then forms the integrand of the outer integral this again being evaluated by Simp- 
son's rule. Also included in the inner integral is the following correction factor 
[22]: 

3 Z f n _ 2 -  4fn_ l + 6 fn -  4fn+l +fn (46) 
90 

nodd 

This is added to the following Simpson rule for integrandf: 
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-h [fo + fu + 2 z fn + 4 z fn (47) 
nodd neven 

where the integrand is divided into N (even N) equal intervals of width h and f0 
and fN are the integrand values at the lower and upper limits of  integration, 
respectively. 

6.2. SOME RESULTS ON THE ACCURACY OF THE SHAPE DESCRIPTORS 

In order to assess how accurate the resulting descriptors are when evaluated 
using the above method,  the procedure was tested using the square of an ellipsoidal 
function 

r(O, d~) = (a sin 0 cos ~b) 2 + (b sin 0 sin qS) 2 + (c cos 0) 2 . (48) 

For  such a shape it is possible to calculate descriptors analytically up to l = 2 and 
all higher order descriptors are zero. The shape descriptors are therefore given by 

o~02n ~0 n at,,, = dO dOsinO{(asinOcos6) 2 + (b sin 0sin~b) 2 

+(ccos 0)2}( Y'i")*(O, ¢). (49) 
Evaluating the above analytically and by computer program therefore gives an 

indication of the accuracy of the chosen technique and some figures are shown in 
table 1 for different values of the parameters a, b, c. 

In general it was found that up to l = 50 the results were accurate to four signifi- 
cant figures. A further way of assessing the accuracy of the calculated descriptors 
is to reproduce the original shape from the descriptors, i.e., using eq. (15) and the 
method  has again been seen to produce excellent results [5]. 

7. The  molecu la r  shape  

7.1. THE MOLECULAR SURFACE MODEL 

A method  for evaluating shape descriptors is now available and it is therefore 
necessary to obtain a suitable representation of the surface of a molecule which 
allows the integration to be carried out. This surface is the shape for which hitherto 
no general method  of shape analysis had been developed. 

The simplest case that may be considered is to take an entire molecule and 
obtain a set of  descriptors for this molecule. This will be the case when interest is 
centered on the entire molecule and its shape properties rather than on some speci- 
fic region such as a receptor site on the molecule. The latter situation will be dealt 
with presently but in either case the three dimensional atomic coordinate structure 
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Table 1 
Comparisons 
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of computed and actual values for a number  of shape descriptors. 

a =  1 . 0 , b = 2 . 0 ,  c = 3 . 0  

Descriptor Actual value Computed value 

a00 (real) 16.542902839 16.542902978 
a00(imag) 0.000000000 0.000000000 
al0(real) 0.000000000 0.000000855 
al0(imag) 0.000000000 0.000000000 
all (real) 0.000000000 -0.000000285 
al l( imag) 0.000000000 0.000000002 
a20(real) 6.869767140 6.869766705 
a20(imag) 0.000000000 0.000000000 
a21 (real) 0.000000000 0.000000000 
a21 (imag) 0.000000000 0.000000000 
a22(real) - 1.941625940 - 1.941625700 
a22(imag) 0.000000000 -0.000000003 

a = 2.6,b = 51.5,c = 0.5 

Descriptor Actual value Computed value 

a00(real) 3142.277128760 3142.277 221764 
a00(imag) 0.000000000 0.000000000 
al0(real) 0.000000000 0.000078771 
al0(imag) 0.000000000 0.000000000 
al l (real) 0.000000000 -0.000118233 
all  (imag) 0.000000000 0.000000003 
a20(real) - 1404.872771656 - 1404.872796894 
a20(imag) 0.000000000 0.000000000 
a21 (real) 0.000000000 0.000000000 
a21 (imag) 0.000000000 0.000000000 
a22(real) - 1712.184002292 - 1712.183992708 
a22(imag) 0.000000000 0.000280836 

of the molecule is needed. In the case of  protein molecules structures can be those 
obtained using crystallographic techniques and stored in the Brookhaven protein 
data bank [25]. For small molecules, structures can be calculated by, for example, 
using the A M P A C  package [26]. Once a structure is available it is then necessary to 
obtain some representation of  the surface "envelope" of  the molecule and this is 
done using Connolly's program [27]. This generates coordinates of points which lie 
on the so called solvent accessible surface of the molecule [28]. This is not  the only 
model  of  the surface that may be taken so for example energy surfaces could also be 
considered. 

When interest is centered around some local region of a molecule there are two 
approaches that may be taken in order to obtain a "molecular envelope". The first 
is to generate surface points for the entire molecule and then use some criterion 
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for extracting those points that  lie on the region of  interest. Such a criterion will in 
general be based on a cutoff  distance so that surface points lying within a given 
distance f rom some chosen centre are obtained. 

In practice it is convenient to consider structures of  bound complexes and 
obtain points on each surface which lay within a certain distance from the other sur- 
face. This is illustrated in fig. 5 and a program, the interface program, has been 
writ ten to carry  out  this process. 

The second possibility is to decide, perhaps with the aid of  interactive computer  
graphics, which atoms form a region of  interest; for example, those a toms which 
form a binding or active site of  a molecule. This subset of  a tom coordinates can 
then be used by the Connolly program for the generation of  surface points over the 
desired region of  interest. 

The essential difference in the two approaches is in the way in which an exposed 
region that  was otherwise embedded inside the molecule is "closed" off. In the for- 
mer  this region remains open with no surface points whereas in the latter a toms 
become fully exposed and surface points are generated (compare fig. 5 and fig. 6). 

The latter case may  be considered somewhat  artificial since the embedded 

A "'\ 

...... i " \  / 

Fig. 5. If the structure of a complex is available then surface points are generated for each individual 
molecule (by editing the single file of the complex coordinates and producing two separate files for 

each molecule). A distance criterion is then used to obtain points on the interface regions. 
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Fig. 6. Atoms forming the regions of interest over a molectfle are selected. Connoly points are then 
generated for these atoms thus "closing off" an otherwise open region of the surface. 

region does not play a role in shape complementari ty and should not therefore be 
used in generating shape descriptors. In particular the effect of  this closing off is 
rather different between hollows and protrusions and for this reason this method  
would seem more suited to comparing similarities in shapes between either a group 
of  receptor sites or a group ofligands. 

In either case the result is a set of points or Cartesian coordinates corresponding 
to the solvent accessible surface. This surface is then the shape for which it is 
desired to calculate shape descriptors. 

7.2. MAPPING TO THE SURFACE OF A SPHERE - THE MAPPING PROGRAM 

Connolly's program outputs a list of x y z coordinates and it is evident that  the 
surface must  be represented as a function of polar coordinates in order to form an 
expansion in terms of spherical harmonics. This may be viewed as a process of map- 
ping the molecular shape to the surface of  a sphere and would appear to be a 
straightforward exercise in converting from Cartesian to spherical polar coordi- 
nates. However, there are two problems regarding this. The first point  is that a 
direct conversion from Cartesian to polar coordinates is unlikely to produce points 
at uniform intervals of  polar angles, as is required for carrying out the integra- 
tion. The second problem is to resolve reentrant regions such that  from a single mul- 
tivalued function r(O, ¢), several single valued functions rk(0, 4~) are obtained. 

To obtain values at uniform intervals requires some method of interpolation 
and the strategy chosen was the simplest, i.e., that of bilinear interpolation [24]. In 
order to carry out this operation surface points are converted to polar coordinates 
and then sorted into "boxes". These boxes are formed by a grid of  0 and ~b values 
at one degree intervals, the step value used in the Simpson integration. This will 
generally give the result illustrated in fig. 7 since no assumptions are being made 
concerning the distribution of points. 
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Fig. 7. Mapping to the surface of a sphere. Points surrounding grid intersections (i.e. integer 0 and 
~b) are used to interpolate to values at these intersections. See text for further explanation. 

Once the points have been sorted into their respective boxes, interpolation to 
integral values of  0 and ~b can take place. To do this, at each integral value of 0 and 
4, points in the surrounding four boxes are obtained and the values r(O, c~) of these 
points are used to estimate the value r, at the particular integral 0 and ~b. 

Unfortunately the situation is somewhat more complicated because of how the 
points may be distributed. Hence it may occur that there are many points in the sur- 
rounding four boxes (coordinate a in fig. 7), in which case interpolation will work 
well, or there may be no points at all in the surrounding boxes (coordinate b). In 
this latter case the strategy is to widen the search so that boxes further away are also 
considered. At the next level there are twelve boxes to be considered. This process 
can in principle go on indefinitely and the further afield the search then the less 
accurate is likely to be the interpolated value. It also may be the case that the value 
to be interpolated is actually zero so that at some stage the search for points should 
be abandoned and the interpolation value set to zero (coordinate c which lies out- 
side the piecewise continuous surface being considered). 

Because of these uncertainties there is no criterion for deciding how far out the 
search should be made before setting an interpolated value to zero. The ideal search 
level or radius will depend on how densely the points are distributed over the mole- 
cule (a parameter which can be set in Connolly's program). Also, having converted 
these points into polar form and sorted into boxes there will be differences in the 
number of points per grid box over various regions of  the sphere. This will also 
include the possibility of  boxes having no points. This difference will be most pro- 
nounced if"polar" regions are compared with "equatorial" regions. Hence, even if 
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it is supposed that the number  of  points per unit area is uniform over the sphere, 
since the number  of  grid boxes per unit area is higher at the poles than at the equa- 
tor the result would be more points per box at the equator than at the poles. This 
is a consequence of the non-Euclidean nature of  the surface of a sphere; one degree 
grid boxes do not  cover the same area from one region of  the sphere to another.  
Note  also that the number of  points per grid box is influenced by the size of  a mole- 
cule. The most  suitable way of overcoming the problem is by having as high a den- 
sity as possible and a low search radius and this was the general strategy adopted. 
It is possible to change the point search strategy according to the region of  the 
sphere being considered but this idea was not implemented. 

The second even more difficult problem is that caused by reentrants. In convert- 
ing to polar coordinates and then sorting into boxes, points that lie on separate 
regions of surface (i.e., r(O, ~) is multivalued giving a number of separate surface 
regions) will be placed into the same box (fig. 8). 

Hence, iterations using all such points will result in an error with the correspond- 
ing consequences as shown in fig. 8. The problem is therefore how to decide first 
whether there is a reentrant region and secondly select those points on a particular 
region of  the surface for interpolating a value on that region of surface. As there is 
no way of  knowing where reentrants lie or indeed their severity, the difficulty in 
this task becomes obvious. 

This problem has been overcome with some success by considering the radial 
spread of  points within each box. The points are sorted into increasing order of  dis- 
tance from the origin and then sorted into groups based on their separation. The 
process is one of " running"  through points separated by increasing radius (i.e., 
increasing distance from the origin) until a point is encountered whose radial value 

\\,, 

a b 

Fig. 8. The reentrant problem, a) Points on a multivalued contour, b) The result of direct interpola- 
tion to integral values of ~b. c) Step distance l allows points to be resolved to separate contour regions. 

d) However reentrant edges remain unresolved. 
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is greater than the previous point by more than a set value. All previous points are 
then taken to lie on a separate surface region and the large separation between the 
current and previous surface point indicates the beginning of a new surface region 
(see fig. 8). Again, there is the difficulty of deciding on the set value for beginning a 
new surface region; too large a distance and separate surfaces will not be resolved 
and too small and any local undulations in the surface will be treated as separate 
regions. A value of 1.4 A was chosen since this certainly will resolve reentrants 
capable of letting a water molecule in. However, even with this choice it is still 
impossible to cope with the edges of reentrants without any error since the edge of a 
reentrant corresponds to where surfaces meet (the radius vector at such a point is 
tangential to the surface) and it would require rather more sophisticated techniques 
to be able to deal with this situation without any problems. 

A less serious problem is the number of separate subsurfaces that are required 
when dealing with reentrants. Recall that a multivalued function is resolved into 
several single valued functions for each of which shape descriptors are calculated. 
For molecules with a great many complicated reentrants, the corresponding func- 
tion will be highly multivalued and many separate subsurfaces will be required. 
However, the situation is generally unknown so that the worst possible case, within 
reason, must be allowed for. Therefore it may happen that some of the separate sub- 
surfaces will in fact be entirely zero and of course the shape descriptors for these 
will be zero. In such a situation these will clearly make no contribution to any shape 
difference measures. 

8. F r o m  raw descriptors to shape difference 

8.1. USING ROTATIONAL INVARIANTS 

Previously it was shown that expansion coefficients, i.e., the shape descriptors 
could be used to calculate new coefficients that were independent of the orientation 
of the original coordinate system. In other words, they are rotationally invariant. 
A program has been written to evaluate these descriptors and calculate a shape 
difference measure using eq. (44). With these descriptors normalisation is now 
unnecessary but information has of course been lost and it is not possible to regen- 
erate the original shape from these modified descriptors. In fact, in calculating the 
modified descriptors phase information is lost. 

8.2. NORMALISATION 

Normalisation as already explained involves finding solutions such that the 
distance measure (eq. (43)) becomes a minimum. This is then a full normalisation. 
Other normalisation strategies were not considered, i.e., suboptimum strategies 
[14]. These approaches may be suitable for automating recognition process but 
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they do not generally give a minimum measure of the distance function (recogni- 
tion can be based on a cut-off value) and for this work it is preferred to have a defi- 
nite shape difference value and not some upper bound. 

Inserting the rotation matrices into eq. (43) means the most general normalisa- 
tion is therefore to find the values of alpha, beta and gamma which minimise the 
equation 

K L +1 I 

(k=0 /=0 m=-I 

2 / 
(0 k Dmq( Ol , /3, "/)blq 

q=-I 

1/2 

(50) 

As far as translation is concerned, the minimum occurs when the centroids of the 
two shapes coincide and this is a straightforward task. Actually in all cases the ori- 
gin of the polar coordinate system is set at the centroid of the molecular surface 
being dealt with. In view of the comments at the end of subsection 5.3, this means 
that the centroid of each subsurface will not lie at the origin and the l --- 1 shape 
descriptors will in general not be zero and are therefore considered along with the 
other shape descriptors that are being used for the analysis. It is possible to mini- 
mise the shape difference measure by obtaining the minimum of each subsurface 
contribution. Hence, this would involve translating each subsurface so that the ori- 
gin coincided with the centroid of that subsurface and using the descriptors calcu- 
lated under these circumstances. This however does not preserve the spatial 
relationships between the individual subsurfaces and is therefore inappropriate. 
The same argument applies when considering rotations also; the same rotation is 
applied to each subsurface (so subsurfaces do not rotate and "slide" over each 
other). 

There are three approaches that may be chosen in attempting to find values of 
the rotation angles that give a minimum to the above equation. The first is simply 
to perform a grid search over the three Euler angles. Note that if translations had to 
be included in the normalisation expression, such a search using a reasonable grid 
size would not be possible. However, even with just three degrees of freedom this 
approach is somewhat expensive. The second method is to differentiate with 
respect to the three Euler angles to obtain three simultaneous equations. These are 
then set to zero and the solutions give turning points in the function. This method 
has been used with success in the two dimensional situation [29] but is not recom- 
mended for higher dimensional cases for the reasons outlined in Press [24]. The 
third method is to use a multi-dimensional minimisation technique (as opposed to 
multi-dimensional root-finding just described). 

It is required to find the global minimum ofeq. (50) and this will depend on hav- 
ing initial estimates of alpha, beta and gamma "close" to the global minimum. To 
achieve such estimates would most likely require the use of interactive graphics 
since as has been seen the minimum distance measure corresponds to the two 
shapes fitting as closely together as possible (according to eq. (4) in a two dimen- 
sional situation). 
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A second possibility is to consider locating minima for low resolution surfaces, 
i.e., low order descriptors only are considered. Since such low order surfaces will be 
relatively smooth, the resulting shape difference measure will also be relatively 
smooth. Hence, there will be few turning points or local minima and it should not 
be a difficult task to locate the global minimum. Further, the global minimum for a 
low order representation should also be close to the global minimum for a high 
order representation since the overall shape of the molecules and hence the overall 
shape of the difference measure function are contained in the low order descrip- 
tors. From this basis, an approach seems possible for the location of global mini- 
mum, even to high order shape representations, by first considering low order 
terms. 

A program was written which locates minima given initial estimates using the 
downhill simplex method [24]. The program worked satisfactorily when consider- 
ing ellipsoidal functions and was able to find the best positions for fitting ellipsoidal 
surfaces together (involving rotations of 90 degrees) but otherwise it appeared 
unreliable even for low order shape representations and a program of obtaining 
low order minima and then moving to higher orders has so far not been tested. 

9. Quant i ta t ive  molecular  shape difference 

Of itself a quantitative shape difference measure between two bodies holds little 
meaning without there being any standard of reference. One possible way to over- 
come this is to introduce some standard range of shape difference so that, for exam- 
ple, a value of zero corresponds to identical shapes and a value of 100, say, 
corresponds to completely dissimilar shapes. The latter may be defined by produ- 
cing random coordinates of atoms, obtaining Connolly surfaces for these and cal- 
culating shape descriptors in the usual way. The shape difference given by such 
shape descriptors may then be taken to define completely dissimilar shapes and 
thus a suitable normalisation (i.e. scaling) for a standard shape difference scale is 
obtained. It may also be advantageous to introduce certain constraints when ran- 
dom coordinates are produced in order to produce more realistic "random mole- 
cules" but the main point is that there should be no correlation between completely 
dissimilar shapes. 

However, the need for such a scale is bypassed when a number of molecules are 
being compared with respect to each other. This can be done by taking the mole- 
cules of interest, obtaining shape difference measures between all the molecules and 
constructing a distance matrix or dissimilarity matrix containing the quantitative 
shape difference information. By means of classical scaling [30] it is often possible 
to obtain a visual display in two or in three dimensions of this distance matrix. In 
this way, relationships such as clusters of molecules can be directly observed. 
Results obtained using this technique will be presented in a subsequent paper. 
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10. Conclus ion 

In this paper,  a me thod  of  obtaining shape descriptors for molecules or regions 
of  molecules based on the theory of  spherical harmonics has been described. In 
addi t ion a number  of  difficulties have been discussed and ways of  overcoming these 
problems presented. Compute r  programs have been written to obtain  shape 
descriptors and the method  adopted  for calculating the shape descriptors has been 
seen to provide accurate shape descriptor values. It has been demonst ra ted  that  
these values do indeed contain the required shape information and it has also been 
shown how these values can be used to calculate a quanti tat ive measure  of  shape 
difference between molecules. For  the raw descriptors, this difference must  be mini- 
mised with respect to coordinate  operat ions which for large numbers  of  molecules 
is an expensive task. However ,  further descriptors can be calculated which do not  
require normalising and these used to define a shape difference measure.  Fo r  a 
large number  of  molecules, a distance matrix may  be obta ined and a visual repre- 
sentat ion of  the distance matrix can be obtained using the techniques of  classical 
scaling. 
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